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Motivation

Two types of statistical inference in particle
physics:

1. Hypothesis testing: allows us to claim dis-
covery or rejection of a theory – e.g. Higgs
boson discovery in 2012.

2. Maximum likelihood estimation: estima-
tion of physical quantities – e.g. mass of the
Higgs boson.

Complicating factors:

1. Observational data (detector readings) x are
high-dimensional.

2. Theories have many free parameters θ.

3. Likelihood of data under theory p(x|θ) is not
known explicitly.

Simulation-based inference: accurately simulate
the theory to draw samples from p(x|θ), and use
these to perform inference [2].

Traditional methods, e.g. histograms and
kernel density estimates, require dimensional-
ity reduction and therefore discard information.

Machine learning likelihoods

Neural density estimation:

• Approximate p(x|θ) with a neural network.

• Train by maximising likelihood of samples
drawn from simulator.

• Example architectures: mixture density net-
works [1] and normalising flows [4].

Ratio estimation:

• Train a classifier to distinguish between sam-
ples drawn from two different parameter
points θ0 and θ1.

• Classifier’s probabilistic predictions can be
used to estimate the likelihood ratio:

r(x) =
p(x|θ1)
p(x|θ0)

.
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Bayesian neural networks for
ratio estimation

Bayesian neural networks (BNNs): define prob-
ability distributions over neural network weights –
allows expression of model uncertainty [3].

Two reasons BNNs should work well for ratio esti-
mation:

1. Calibration due to inherent regularisation.

2. Model uncertainty can be used to perform
Bayesian optimisation to find maximum
likelihood estimates with fewer simulations.
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