Machine learning tools for inference and experimental design in particle physics

Conor Sheehan (*Supevisor: André Freitas*) conor.sheehan-2@manchester.ac.uk

Motivation

Two types of **statistical inference** in particle physics:

- 1. **Hypothesis testing:** allows us to claim discovery or rejection of a theory e.g. Higgs boson discovery in 2012.
- 2. **Maximum likelihood estimation:** estimation of physical quantities e.g. mass of the Higgs boson.

Complicating factors:

- 1. Observational data (detector readings) x are high-dimensional.
- 2. Theories have many free parameters θ .
- 3. Likelihood of data under theory $p(\mathbf{x}|\theta)$ is not known explicitly.

Simulation-based inference: accurately simulate the theory to draw samples from $p(\mathbf{x}|\theta)$, and use these to perform inference [2].

Traditional methods, e.g. histograms and kernel density estimates, require dimensionality reduction and therefore discard information.

Machine learning likelihoods

Neural density estimation:

- Approximate $p(\mathbf{x}|\boldsymbol{\theta})$ with a neural network.
- Train by maximising likelihood of samples drawn from simulator.
- Example architectures: mixture density networks [1] and normalising flows [4].

Ratio estimation:

- Train a classifier to distinguish between samples drawn from two different parameter points θ_0 and θ_1 .
- Classifier's probabilistic predictions can be used to estimate the **likelihood ratio**:

 $r(\mathbf{x}) = \frac{p(\mathbf{x}|\theta_1)}{p(\mathbf{x}|\theta_0)}$

Bayesian neural networks for ratio estimation

Bayesian neural networks (BNNs): define probability distributions over neural network weights – allows expression of model uncertainty [3].

Two reasons BNNs should work well for ratio estimation:

- 1. Calibration due to inherent regularisation.
- 2. Model uncertainty can be used to perform **Bayesian optimisation** to find maximum likelihood estimates with fewer simulations.

Distribution of maximum likelihood estimates (1400 experiments)

References

- [1] C. M. Bishop. Mixture density networks. 1994.
- [2] K. Cranmer, J. Brehmer, and G. Louppe. The frontier of simulation-based inference. *Proceedings of the National Academy of Sciences*, 2020.
- [3] Y. Gal. Uncertainty in deep learning. 2016.
- [4] G. Papamakarios. Neural density estimation and likelihood-free inference.